User:Zeno Gantner
Jump to navigation
Jump to search
Zeno Gantner, formerly at University of Hildesheim, Germany. Now working at Zalando in Berlin. Primary developer of the MyMediaLite recommender system library. Co-organizer of the Recommender Stammtisch in Berlin.
homepage, Google Scholar, GitHub, StackOverflow, Kaggle, SlideShare
TODO
- page about Fashion RecSys workshop
- add link to Google tutorial
- add pages about PyTorch and TF recommendations
- marker templates for sequential recommendations, embeddings, e-commerce, CTR prediction, reinforcement learning, cold-start
- extend Person template: Google Scholar, LinkedIn, SlideShare, and GitHub
- extend/create dataset template (link to downloads, Google scholar search, Papers with Code)
- event/conference template (individual events and conference series)
- create company template (similar to persons), with github link, tech blog, Wikipedia link, corporate page, etc.
- page about Recsperts podcast
Article wishlist
- A/B testing
active learning- approximate nearest neighbor search
- attribute-aware recommendation
- attribute-based recommendation [1]
- autoencoder
- bag-of-items
- bagging
- bandit (-> multi-arm bandit)
- beer recommendation -- very important task ... (ask Ben)
blogs- BookCrossing (ask Cai-Nicolas)
- capped binomial deviation (CBD)
- Category:File format
- CHI (ask Alan)
- choice overload (ask Bart, Martijn, Dirk)
- click stream
- client-side recommendation (ask Chris)
- code recommendation [2]
- CofiRank (ask Markus)
cold-start problem- computational advertising
content-based filteringcontextcontext-aware recommendation- contextual bandit
- cross-validation [3]
- data analytics
- data mining
- decision theory
- deep learning
- distance
- distributed computing (ask Sebastian)
- distributed matrix factorization (ask Rainer)
- Eigentaste
- Epinions dataset
- Explanations (ask Nava)
- exploration vs. exploitation
- evaluation
- factorization model, factorization models
- FAQ for recommender system developers
- FAQ for recommender system users
- Fashion recommendation, Fashion recommendations
- Filter bubble (ask Alan and Neal)
- Flixster dataset
- F measure, F1 measure
- fold-in [4]
- GraphChi (ask Danny)
- GraphLab (ask Danny)
- Greg Linden
- grid search [5]
group recommendationHarry Potter effect- HCI
- higher-order SVD (ask Steffen)
hybrid recommendation- hyperparameter
- incentive
- Infer.NET [6]
- information retrieval
- Introduction to recommender systems
- Introduction to recommender system algorithms
- IPTV (ask Chris)
- item
- IUI: IUI 2010, IUI 2011, IUI 2012, IUI 2013
- Jaccard index
- Jester
- job recommendation
- Joke recommendation
- KDD Cup: KDD Cup 2010 KDD Cup 2011 KDD Cup 2012
- KDD: KDD 2007, KDD 2008, KDD 2009, KDD 2010
- keyword-based recommendation
kNN- lab testing
- latency (ask Sebastian)
- latent factor model
- learning
- learning to rank
- List of acronyms -- cmp. http://aclweb.org/aclwiki/index.php?title=Acronyms
- List of recommender system meetings
- live evaluation (ask Andreas H./Alan)
- location-aware recommendation
- London RecSys Meetup (ask Neal)
- long tail (ask Oscar)
- machine learning
- Markov chain (ask Christoph)
- Markov decision process, MDP
- Matchbox [7] (ask Noam)
matrix factorization- maximum a-priori estimation (MAP)
- maximum inner product search
- mean average precision (MAP) - link to [8]
- mean reciprocal rank
Million Song DatasetMillion Song Dataset Challenge(ask Brian McFee)- MinHash
- [[MLOps]
- model
- monetization
- Movie Hack Day (ask Jannis and Alan)
- multi-arm bandit (ask Matt)
- Music Hack Day (ask Amelie)
- music information retrieval (ask Oscar, Ben, Amelie, Markus)
music recommendationMyMedia(thank you Alan!)NDCG- neural networks
- news recommendation
- offline experiment
- one-class feedback
- overfitting
- page composition
- pairwise interaction tensor factorization (PITF, ask Steffen)
- Papers with Code
- parallel factor analysis (PARAFAC), canonical decomposition (ask Steffen)
- parallel matrix factorization
- parameter
Pearson correlation- personalization
- personalized advertising
- personalized prices [9]
- personalized search
- positive-only feedback
- preference elicitation (ask Martijn and Bart)
- product recommendation
- public transport (ask Neal)
- R
- ranking
- RecDB (ask, http://www-users.cs.umn.edu/~sarwat/RecDB/)
- recipe recommendation
- recommendation of financial products
- recommender lab (ask Michael H.)
recommender system- RecSys meetups (do it yourself)
- reinforcement learning (ask Tobias)
regularization- reputation
- restricted Boltzmann machine (ask Andriy)
- review
- Ringo
- scalability (ask Sebastian)
- semi-supervised learning
- sequential recommendation
- serendipity (ask Alan, ask Ben)
- session-based recommendation
- similarity
- SmartTypes [10]
- software as a service (ask Manuel B.)
- software recommendation
- standard benchmarks TODO
- state of the art cmp. http://aclweb.org/aclwiki/index.php?title=State_of_the_art
- stream processing
SVDSVD++, SVDPlusPlus- TaFeng
tag(thanks Alan)- Tanimoto coefficient --> Jaccard index
- Tapestry
- tensor factorization (ask Steffen)
- text-based recommendation
- text mining
- time-aware recommendation
- transductive learning
- Tucker decomposition (ask Steffen)
- TV program recommendation (ask Chris)
- UMAP
- user
- user-item matrix
- user model
- user preferences
- user recommendation
- user satisfaction
- video recommendation
- WSDM
- Yahoo Movie Dataset
RecSys people
- Joseph Konstan
- John Riedl
- Yehuda Koren
- Pearl Pu
- Greg Linden
- Paul Lamere
- Ted Dunning
- Sebastian Schelter -- https://scholar.google.de/citations?user=zCpQUukAAAAJ&hl=en -- https://github.com/sscdotopen -- https://github.com/schelterlabs
- Ralf Herbrich
Companies
- aklamio [11] (ask Robert)
- Alleyoop -- [12]
AlphabetAmazonApple- BBC -- [13]
- BMAT
- Bol.com
- ByteDance
- Commendo
- Criteo
- Directed Edge -- http://www.directededge.com
- EBay
- The Echo Nest [14] [15] (ask Paul Lamere)
- Etsy
FacebookFilmasterFilmtipset(thanks Alan)Flixster(thanks srbecker)- foursquare -- [16] [17]
- Froomle
- Google -> Alphabet
- Gracenote (ask Oscar)
GravityHulu- Hunch
- Ikea
Instagram- Kaggle
Knewton- last.fm -- [18] [19]
LinkedIn- Lumi
- Meta
- Microsoft
Moviepilot(thanks Alan)- Myrrix
- Netflix
- Nokia -- add 2011 Buzzwords presentation
- Otto
- outbrain -- [20]
- Pandora [21] [22] (ask Tao)
Plista- Prudsys
- Recommind [23]
- RichRelevance (ask Darren)
- Samsung
- Scarab Research
- sematext
- Shopify
- Sidebar
- SoundCloud
- Spotify -- [24] [25]
- Strands
- TiVo
- Twitter [26]
- Yahoo
- YooChoose
Zalando- Zite
RecSys slides, classes, etc.
- http://www.lsi.dsc.ufcg.edu.br/lib/exe/fetch.php?id=bd_lanche&cache=cache&media=fatoracao_matrizes.pdf
- Berkeley: Practical Machine Learning: collaborative filtering (only rating prediction)
- http://alex.smola.org/teaching/berkeley2012/recommender.html
- http://cms.uni-konstanz.de/informatik/rendle/teaching/ss2012/fm0/