Difference between revisions of "User:Zeno Gantner"
Jump to navigation
Jump to search
Zeno Gantner (talk | contribs) |
Zeno Gantner (talk | contribs) |
||
| Line 212: | Line 212: | ||
* [[BMAT]] | * [[BMAT]] | ||
* [[Bol.com]] | * [[Bol.com]] | ||
| − | * [[Booking.com]] [https://dl.acm.org/doi/pdf/10.1145/3383313.3412215] [https://www.researchgate.net/profile/Dmitri-Goldenberg/publication/349762238_Personalization_in_Practice_Methods_and_Applications/links/60409bf04585154e8c75323d/Personalization-in-Practice-Methods-and-Applications.pdf] [https://dl.acm.org/doi/pdf/10.1145/3383313.3412215] [https://dl.acm.org/doi/abs/10.1145/3460231.3474611] [https://dl.acm.org/doi/abs/10.1145/3511808.3557100] [https://dl.acm.org/doi/abs/10.1145/3292500.3330744] | + | * [[Booking.com]] [https://dl.acm.org/doi/pdf/10.1145/3383313.3412215] [https://www.researchgate.net/profile/Dmitri-Goldenberg/publication/349762238_Personalization_in_Practice_Methods_and_Applications/links/60409bf04585154e8c75323d/Personalization-in-Practice-Methods-and-Applications.pdf] [https://dl.acm.org/doi/pdf/10.1145/3383313.3412215] [https://dl.acm.org/doi/abs/10.1145/3460231.3474611] [https://dl.acm.org/doi/abs/10.1145/3511808.3557100] [https://dl.acm.org/doi/abs/10.1145/3292500.3330744] [http://www.toinebogers.com/workshops/complexrec2020/Mavridis.pdf] |
* '''[[ByteDance]]''' and [[TikTok]]/[[Douyin]] (redirect), [https://newsroom.tiktok.com/en-us/how-tiktok-recommends-videos-for-you], [https://github.com/bytedance/Hammer], [https://github.com/bytedance/byteps], [https://github.com/bytedance/LargeBatchCTR], [https://dl.acm.org/doi/pdf/10.1145/3308558.3313447] | * '''[[ByteDance]]''' and [[TikTok]]/[[Douyin]] (redirect), [https://newsroom.tiktok.com/en-us/how-tiktok-recommends-videos-for-you], [https://github.com/bytedance/Hammer], [https://github.com/bytedance/byteps], [https://github.com/bytedance/LargeBatchCTR], [https://dl.acm.org/doi/pdf/10.1145/3308558.3313447] | ||
* [[Commendo]] | * [[Commendo]] | ||
Revision as of 07:42, 11 September 2023
Zeno Gantner, formerly at University of Hildesheim, Germany. Now working at Zalando in Berlin. Primary developer of the MyMediaLite recommender system library. Co-organizer of the Recommender Stammtisch in Berlin.
homepage, Google Scholar, GitHub, StackOverflow, Kaggle, SlideShare
TODO
- page about Fashion RecSys workshop
- add link to Google tutorial
- add pages about PyTorch and TF recommendations
- marker templates for sequential recommendations, embeddings, e-commerce, CTR prediction, reinforcement learning, cold-start
- extend Person template: Google Scholar, LinkedIn, SlideShare, and GitHub
- extend/create dataset template (link to downloads, Google scholar search, Papers with Code)
- event/conference template (individual events and conference series)
- create company template (similar to persons), with github link, tech blog, Wikipedia link, corporate page, etc.
- page about Recsperts podcast
Article wishlist
- A/B testing
active learning- approximate nearest neighbor search
- attribute-aware recommendation
- attribute-based recommendation [1]
- autoencoder
- bag-of-items
- bagging
- bandit (-> multi-arm bandit)
- beer recommendation -- very important task ... (ask Ben)
blogs- BookCrossing (ask Cai-Nicolas)
- capped binomial deviation (CBD)
- Category:File format
- CHI (ask Alan)
- choice overload (ask Bart, Martijn, Dirk)
- click stream
- client-side recommendation (ask Chris)
- code recommendation [2]
- CofiRank (ask Markus)
cold-start problem- computational advertising
content-based filteringcontextcontext-aware recommendation- contextual bandit
- cross-validation [3]
- data analytics
- data mining
- decision theory
- deep learning
- distance
- distributed computing (ask Sebastian)
- distributed matrix factorization (ask Rainer)
- Eigentaste
- Epinions dataset
- Explanations (ask Nava)
- exploration vs. exploitation
- evaluation
- factorization model, factorization models
- FAQ for recommender system developers
- FAQ for recommender system users
- Fashion recommendation, Fashion recommendations
- Filter bubble (ask Alan and Neal)
- Flixster dataset
- F measure, F1 measure
- fold-in [4]
- GraphChi (ask Danny)
- GraphLab (ask Danny)
- Greg Linden
- grid search [5]
group recommendationHarry Potter effect- HCI
- higher-order SVD (ask Steffen)
hybrid recommendation- hyperparameter
- incentive
- Infer.NET [6]
- information retrieval
- Introduction to recommender systems
- Introduction to recommender system algorithms
- IPTV (ask Chris)
- item
- IUI: IUI 2010, IUI 2011, IUI 2012, IUI 2013
- Jaccard index
- Jester
- job recommendation
- Joke recommendation
- KDD Cup: KDD Cup 2010 KDD Cup 2011 KDD Cup 2012
- KDD: KDD 2007, KDD 2008, KDD 2009, KDD 2010
- keyword-based recommendation
kNN- lab testing
- latency (ask Sebastian)
- latent factor model
- learning
- learning to rank
- List of acronyms -- cmp. http://aclweb.org/aclwiki/index.php?title=Acronyms
- List of recommender system meetings
- live evaluation (ask Andreas H./Alan)
- location-aware recommendation
- London RecSys Meetup (ask Neal)
- long tail (ask Oscar)
- machine learning
- Markov chain (ask Christoph)
- Markov decision process, MDP
- Matchbox [7] (ask Noam)
matrix factorization- maximum a-priori estimation (MAP)
- maximum inner product search
- mean average precision (MAP) - link to [8]
- mean reciprocal rank
Million Song DatasetMillion Song Dataset Challenge(ask Brian McFee)- MinHash
- [[MLOps]
- model
- monetization
- Movie Hack Day (ask Jannis and Alan)
- multi-arm bandit (ask Matt)
- Music Hack Day (ask Amelie)
- music information retrieval (ask Oscar, Ben, Amelie, Markus)
music recommendationMyMedia(thank you Alan!)NDCG- neural networks
- news recommendation
- offline experiment
- one-class feedback
- overfitting
- page composition
- pairwise interaction tensor factorization (PITF, ask Steffen)
- Papers with Code
- parallel factor analysis (PARAFAC), canonical decomposition (ask Steffen)
- parallel matrix factorization
- parameter
Pearson correlation- personalization
- personalized advertising
- personalized prices [9]
- personalized search
- positive-only feedback
- preference elicitation (ask Martijn and Bart)
- product recommendation
- public transport (ask Neal)
- R
- ranking
- RecDB (ask, http://www-users.cs.umn.edu/~sarwat/RecDB/)
- recipe recommendation
- recommendation of financial products
- recommender lab (ask Michael H.)
recommender system- RecSys meetups (do it yourself)
- reinforcement learning (ask Tobias)
regularization- reputation
- restricted Boltzmann machine (ask Andriy)
- review
- Ringo
- scalability (ask Sebastian)
- semi-supervised learning
- sequential recommendation
- serendipity (ask Alan, ask Ben)
- session-based recommendation
- similarity
- SmartTypes [10]
- software as a service (ask Manuel B.)
- software recommendation
- standard benchmarks TODO
- state of the art cmp. http://aclweb.org/aclwiki/index.php?title=State_of_the_art
- stream processing
SVDSVD++, SVDPlusPlus- TaFeng
tag(thanks Alan)- Tanimoto coefficient --> Jaccard index
- Tapestry
- tensor factorization (ask Steffen)
- text-based recommendation
- text mining
- time-aware recommendation
- transductive learning
- Tucker decomposition (ask Steffen)
- TV program recommendation (ask Chris)
- UMAP
- user
- user-item matrix
- user model
- user preferences
- user recommendation
- user satisfaction
- video recommendation
- WSDM
- Yahoo Movie Dataset
RecSys people
- Joseph Konstan
- John Riedl
- Yehuda Koren
- Pearl Pu
- Greg Linden
- Paul Lamere
- Ted Dunning
- Sebastian Schelter -- https://scholar.google.de/citations?user=zCpQUukAAAAJ&hl=en -- https://github.com/sscdotopen -- https://github.com/schelterlabs
- Ralf Herbrich
Companies
- Alleyoop -- [11]
- Baidu -- [12]
- BBC -- [13]
- BMAT
- Bol.com
- Booking.com [14] [15] [16] [17] [18] [19] [20]
- ByteDance and TikTok/Douyin (redirect), [21], [22], [23], [24], [25]
- Commendo
- Directed Edge -- http://www.directededge.com
- EBay
- The Echo Nest [26] [27] => Spotify
- Etsy
- foursquare -- [28] [29]
- Froomle
- Hunch
- Ikea
- Kaggle
- Kuaishou [30], [31], [32]
- last.fm -- [33] [34]
- Lumi
- Microsoft
- Myrrix
- Nokia -- add 2011 Buzzwords presentation
- Otto
- outbrain -- [35]
- Pandora [36] [37] (ask Tao)
- Pinterest -- [38]
- Prudsys
- Recommind [39]
- RichRelevance (ask Darren)
- Samsung
- sematext
- ShareChat -- [40]
- Shopify -- ACM RecSys
- Sidebar
- SoundCloud
- Spotify -- [41] [42] [43]
- Strands
- TiVo
- Twitter [44] [45] [46] [47]
- Yahoo [48]
- Yandex [49]
- YooChoose
- Zite
RecSys slides, classes, etc.
- http://www.lsi.dsc.ufcg.edu.br/lib/exe/fetch.php?id=bd_lanche&cache=cache&media=fatoracao_matrizes.pdf
- Berkeley: Practical Machine Learning: collaborative filtering (only rating prediction)
- http://alex.smola.org/teaching/berkeley2012/recommender.html
- http://cms.uni-konstanz.de/informatik/rendle/teaching/ss2012/fm0/